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Decision Tree
• It is one of the most widely used classification techniques that allows you to 

represent a set of classification rules with a tree.

• Tree: hierarchical structure consisting of a set of nodes, correlated by arcs labeled 
and oriented. There are two types of nodes:

• Leaf nodes identify classes, while the remaining nodes are labeled based on the attribute that partitions the 
records. The partitioning criterion represents the label of the arcs

• Each root-leaf path represents a classification rule
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Decision Tree: an Example
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Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10
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For each dataset several decision tree 

could be defined



Applying the model
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Apply 

Model

Induction
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Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
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Applying the model
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Test Data

Start from the root



Applying the model
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Applying the model
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Applying the model
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Applying the model

12

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
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Learning the model
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Learning the model
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The decision tree number grows exponentially with the number of attributes. Algorithms 
generally use greedy techniques that locally make the "best" choice

Many algorithms are available:

• Hunt's Algorithm
• CART
• ID3, C4.5
• Sliq, SPRINT

Different issues have to be addressed

• Choice of the split policy 

• Choice of the stop policy

• Underfitting/Overfitting

• ID3, C4.5
• Sliq, SPRINT

• Data Fragmentation

• Search Criteria

• Expression

• Replication of trees
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The Hunt’s Algorithm
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Recursive approach that progressively subdivides a set of Dt records into 
purely pure record sets

Let Dt be the set of records of the training set corresponding to node t 
and yt = {y1, ..., yk} the possible class labels

Overall procedure:
◦ If Dt contains records belonging to the yj class only, then t is a leaf node 

with label yj

◦ If Dt is an empty set, then t is a leaf node to which a parent node class is 
assigned

◦ If Dt contains records belonging to several classes, you choose an 
attribute and a split policy to partition the records into multiple subsets.

◦ Apply recursively the current procedure for each subset

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Pseudocode
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// Let E be the training set and F the attributes

result=PostPrune(TreeGrowth(E,F));

TreeGrowth(E,F)
if StoppingCond(E,F)= TRUE then
leaf=CreateNode();
leaf.label=Classify(E);
return leaf;

else 
root = CreateNode();
root.test_cond = FindBestSplit(E,F);
let V = {v | v is a possible outcome of root.test_cond}

for each v  V do
Ev = {e | root.test_cond (e)=v and e  E}
child = TreeGrowth(Ev,F);
add child as descendants of root and label edge 
(rootchild) as v

end for
end if
return root;

end;



Further Remarks…
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Finding a optimal decision tree is a NP-Complete problem, but many heuristic 
algorithms are available and very efficient
• Most approaches run a top down recursive partition based on greedy criteria

Classification using a decision tree is extremely fast and provides easy 
interpretation of the criteria
• The worst case is O (w) where w is the depth of the tree

Decision trees are robust enough to strongly correlated attributes
• One of the two attributes will not be considered
• It is also possible to try to discard one of the preprocessing attributes through appropriate 

feature selection techniques



Further Remarks…
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Decision tree expressivity is limited to the possibility of performing search space 
partitions with conditions that involve only one attribute at a time

• Decision boundary parallel to the axes

Yes No

4

0

0

4

Yes No

0

3

4

0

Yes No

y<0.33

X<0.43

y<0.47

X-Y = 1 This split is not feasible with traditional decision trees



Characteristic features
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Starting from the basic logic to completely define an algorithm for building 
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for interrupting splitting
• Methods for evaluating the goodness of a decision tree



Defining the Split Condition
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Depends on the type of attribute

• Nominal
• Ordinal
• Continuous

Depends on the number of splits applicable to attribute values

• Binary splits
• N-ary splits



Splitting Nominal Attributes
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N-ary Split: Creates as many partitions as the attribute values are

Binary Split: Creates two partitions only. The attribute value optimally 
split the dataset must be found.

CarType
Family

Sports

Luxury

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family} OR



Splitting Ordinal Attributes
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• Partitioning should not violate order sorting.

N-ary Split: Creates as many partitions as the attribute values are

Binary Split: Creates two partitions only. The attribute value optimally 
split the dataset must be found.

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large}

OR

Size
{Small, 

Large} {Medium}

Size
Small

Medium

Large



Splitting Continuous Attributes
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• N-ary Split: The split condition can be expressed as a Boolean test that results 
in multiple ranges of values. The algorithm must consider all possible range of 
values as possible split points

• Binary Split : The split condition can be expressed as a binary comparison test. 
The algorithm must consider all values as possible split points

24
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Splitting Continuous Attributes
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A discretization technique can be used to manage the complexity of the search 
for optimal split points 

• Static: discretization takes place only once before applying the algorithm

• Dynamic: discretization takes place at each recursion step by exploiting 
information about the distribution of input data to the Dt node.

25



Characteristic features
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Starting from the basic logic to completely define an algorithm for building 
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for interrupting splitting
• Methods for evaluating the goodness of a decision tree



How to determine the best split value?
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• Before splitting a single class with 10 records in C0 class and 10 records 
in C1 class

• The split criterion must allow you to determine more pure classes. It 
needs a measure of purity
• Gini index

• Entropy

• Misclassification error

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11



How to determine the best split value?
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B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 

C1 N11 
 

 

C0 N20 

C1 N21 
 

 

C0 N30 

C1 N31 
 

 

C0 N40 

C1 N41 
 

 

C0 N00 

C1 N01 
 

 

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs  M0 – M34



Impurity Measures
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• Given a node p with records belonging to k classes and its partitioning in n child nodes

• M = record number in father node p

• Mi = number of records in son node i

ATTENTION do not confuse the number of classes (k)
and that of child nodes (n)

• Several index can be adopted

• Gini index: adopted in CART, SLIQ, SPRINT.

• Entropy adopted in ID3 e C4.5

• Misclassification Error

• The total impurity of the split is given by the following formula where meas () is one of the measures 
introduced so far
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Comparing Impurity Measures
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• Impurity measures behavior for a two-class problem



Computing Gini for Binary Attributes
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B?

Yes No

Node N3 Node N4

 Parent 

C1 6 

C2 6 

Gini = 0.500 

 
 N1 N2 

C1 4 2 

C2 3 3 

Gini=0.486 
 

 

Gini(N3) = 1 – (5/7)2 – (2/7)2 = 0.408 

Gini(N4) = 1 – (1/5)2 – (4/5)2 = 0.320

Impurity= 7/12 * 0.408 + 5/12 * 0.320= 0.371

A?

Yes No

Node N1 Node N2

 N3 N4 

C1 5 1 

C2 2 4 

Gini=0.371 
 

 



Computing Gini for Categorical Attributes
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It is usually more efficient to create a "count matrix" for each distinct value of the classification 
attribute and then perform calculations using that matrix

CarType

{Sports,
Luxury}

{Family}

C1 3 1

C2 2 4

Gini 0.400

CarType

{Sports}
{Family,
Luxury}

C1 2 2

C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1

C2 4 1 1

Gini 0.393

N-ary split Binary split

(find best partition of values)



Computing Gini for Continuous Attributes
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It requires to define the split point using a binary condition. The number 
of possible conditions is equal to the number of distinct values of the 
attribute

You can calculate a matrix count for each split value. The array will count 
the elements of each class for attribute values greater than or less than 
the split value

A naive approach:

• For each split v value, read the DB (with N records) to build the count 
matrix and calculate the Gini index

• Computationally inefficien - O (N2) – since:

• Scan DB O (N)

• Repeat for each value of v O (N)

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Taxable

Income

> 80K?

Yes No



Computing Gini for Continuous Attributes
A more efficient solution is to:

• Sort records by attribute value

• Read the values sorted and update the count matrix, then calculate the Gini index

• Choose as the split point the value that minimizes the index

Cheat No No No Yes Yes Yes No No No No 

 Taxable Income 

60 70 75 85 90 95 100 120 125 220 

 
55 65 72 80 87 92 97 110 122 172 230 

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > 

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0 

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0 

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420 

 

Feasible split points

Ordered values

Sono possibili ulteriori ottimizzazioni?



Gain-based Split
Using class impurity measures such as Gini and Entropy requires choosing the split value that 
maximizes the "gain" in terms of reducing the impurity of the classes after the split.
For example, considering entropy, the gain of partitioning of a node in child nodes is:

Selecting the split value that maximizes GAIN tends to determine split criteria that generate a 
very large number of very pure classes but with few records.

• Partitioning students according to their enrollment guarantees that all classes (formed by 
only one student) are totally pure !!
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Split based on split info
To avoid the problem of spraying classes, it is preferable to maximize the Gain Ratio:
N = number of child nodes
M = record number in father p
Mi = number of records in child node i

The higher the number of children, the greater the value of SplitInfo with a consequent 
reduction in the GainRatio
For example, assuming that each child node contains the same number of records, SplitInfo = 
log n.
C4.5 uses the SplitINFO-based criterion

SplitINFO

GAIN
GainRATIO

Split

split  



n

i

ii

m

m

m

m
SplitINFO

1
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Split based on split info
To avoid the problem of spraying classes, it is preferable to maximize the Gain 
Ratio: 

n = da 2 a 64

m  = 100
mi = m/n
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Exercize
Compute Gini index and information gain for the following binary problem and 
comment on the results

A B Classe

T F +

T T +

T T +

T F -

T T +

F F -

F F -

F F -

T T -

T F -



Characteristic features
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Starting from the basic logic to completely define an algorithm for building 
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree



Stop Criteria for Decision Tree Induction
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Stop splitting a node when all its records belong to the same class

Stop splitting a node when all its records have similar values on all 
attributes

• Classification would be unimportant and dependent on small 
fluctuations in values

Stop splitting when the number of records in the node is below a certain 
threshold (data fragmentation)

• The selected criterion would not be statistically relevant



Characteristic features
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Starting from the basic logic to completely define an algorithm for building 
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree



Metrics for model evaluation
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Starting from the basic logic to completely define an algorithm for building 
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree



Metrics for model evaluation
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The Confusion Matrix evaluates the ability of a classifier based on the following 
indicators
• TP (true positive): records correctly classified as Yes class
• FN (false negative): Incorrectly classified records as class No
• FP (false positive): Incorrectly classified records as class Yes
• TN (true negative) records correctly classified as class No

If the classification uses n classes, the confusion matrix will be  n × n

Expected Class

Actual 
Class

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN



Accuracy
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Accuracy is the most widely used metric to synthesize the information 
of a confusion matrix

Equally, the frequency of the error could be used

FNFPTNTP

TNTP




Accuracy 

FNFPTNTP

FNFP




 rateError 



Accuracy Limitiations
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Accuracy is not an appropriate metric if the classes contain a very 
different number of records. Consider a binary classification problem in 
which

• # Record of class 0 = 9990

• # Record of class 1 = 10

A model that always returns class 0 will have an accuracy of 9990/10000 = 
99.9%

In the case of binary classification problems, the class "rare" is also called 
a positive class, while the class that includes most of the records is called 
a negative class



Precision and Recall
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Precision and Recall are two metrics used in applications where the correct 
classification of positive class records is more important

Precision measures the fraction of record results actually positive among all those 
who were classified as such

• High values indicate that few negative class records were incorrectly classified as positive.

Recall measures the fraction of positive records correctly classified
• High values indicate that few records of the positive class were incorrectly classified as negatives.

FNTP

TP

FPTP

TP







r Recall,

 p  Precision,

Positive Negative

FN

TP FP

TN



Precision and Recall
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Precision = 1 if all the positive records 
were actually detected

Recall = 1 if there are no false negatives

If both are valid 1, the predetermined classes coincide with the real ones

Positive Negative

FN

TP

TN

Positive Negative

TP FP TN



F-measure
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A metric that summarizes precision and recall is called F-measure

F-measure represents the harmonic mean of precision and recall

• The harmonic average between two x and y numbers tends to be close to the smallest of the two 
numbers. So if the harmonic average is high, it means both precision and recall are.

• ... so there have been no false negative or false positives

FNFPTP

TP

pr

rp









2

22
F measure,-F



Cost-Based Evaluation
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Accuracy, Precision-Recall and F-measure classify an instance as positive if P(+,i)>P(-,i). 
◦ They assume that FN and FP have the same weight, thus they are Cost-Insensitive

◦ In many domains this is not true!
◦ For a cancer screening test, for example, we may be prepared to put up with a relatively high false positive rate in order to get a high true 

positive, it is most important to identify possible cancer sufferers

◦ For a follow-up test after treatment, however, a different threshold might be more desirable, since we want to minimize false negatives, we 
don’t want to tell a patient they’re clear if this is not actually the case.



The Cost Matrix
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The cost matrix encodes the penalty that a classifier incurs in classifying a record in a different class
A negative penalty indicates the "prize" that is obtained for a correct classification

C(M)=TP×C(+|+) + FP×C(+|-) + FN×C(-|+) + TN×C(-|-)

A model constructed by structuring, as a purity function, a cost matrix will tend to provide a model 
with a minimum cost over the specified weights

Expected Class j

Actual 

Class i

C(i|j) Class = + Class=-

Class=+ C(+|+) C(+|-)

Class=- C(-|+) C(-|-)



Computing the Cost
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Cost 

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model 

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model 

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255



ROC Space
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ROC  graphs are two-dimensional graphs that depict relative tradeoffs between benefits (true
positive) and costs (false positive) induced by a classifier. We distinguish between:

1

0,75

0.5

0,25

0

TP
R

=T
P/

(T
P

+F
N

)

TPR=FP/(TN+FP)
0 0,25 0,5 0,75 1

• Probabilistic classifiers return a score that is not necessarily a sensu
stricto probability but represents the degree to which an object is a 
member of one particular class rather than another one (e.g. 
Decision tree, Naïve Bayes)
• In a decision tree an istance in a leaf is associated to the class + if the 

number positive training instances in the leaf (pos) is greather than the 
number of negative instances (neg). The ratio pos/(pos+neg) can be used
as a score showing the likelihood of an instance to be of class + or -

• A discrete classifier predicts only the classes to which a test object 
belongs (e.g. SVM)

ROC curve characterizes a probabilistic classifier, and each point of 
this curve corresponds to a discrete classifier.



ROC Space
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A ROC graph for a probabilistic classifier is obtained varying the threshold (or the probability if
available) used to assign an instance i to a class (+/-).

• Instead of P(+,i) > P(-,i) than i is +

• We have if P(+,i)> x than i is + x  [0,..,1]

Each x value determines different TPR and FPR

The ROC curve shape depends both on the classifier capabilities
and on the dataset features.

1

0,75

0.5

0,25

0

TP
R

=T
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N

)

FPR=FP/(TN+FP)
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A good classifier tends to have performance close to the higher-left corner of the 
ROC graph that is: High TPR and Low FPR

The Area Under the Curve – AUC provides an overall rating of the classifier, 
while segments of the curve provide a rating in specific TPR – FPR settings.

The larger the overlap between + and – instances distributions, the harder for 
the classifier to distinguish between positive and negative instances.

A dummy classifier performs on the ROC graph diagonal: the TPR is equal to the 
FPR since the classifier answers are random 

Understanding the ROC Space



Comparison of Classifier via ROC curve
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A classifier comparison based on ROC curves or AUC values can be either graphical or numerical.

• A ROC curve running above another is an indicator of better classifier performance, and by the same 
token, the bigger the AUC, the better the overall performance of the test. 

• However, this reasoning is meaningful only if the two ROC curves do not cross at any point. If they do, 
then it makes intuitive sense to point out the region in which one classifier outperforms the other, 
but the comparison of the complete AUC values is not very informative.
• DALI is better than SW when a low FP rate is needed

• BLAST is always worse than DALI & SW



ROC space properties
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ROC curves are insensitive to changes in class distribution. If the proportion of positive to negative 
instances changes in a test set, the ROC curves will not change.

ROC graphs are based upon TPR and FPR, in which each dimension is a strict columnar ratio, so do not 
depend on class distributions.

The class distribution is the relationship of the 
left (P) column to the right (N) column. Any 
performance metric that uses values from both 
columns will be inherently sensitive to class 
skews. Metrics such as accuracy, precision and F 
score use values from both columns of the 
confusion matrix. As a class distribution changes 
these measures will change as well, even if the 
fundamental classifier performance does not. 



Where do ROC curves come from?
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ROC stands for Receiver Operator Characteristic. The term has its roots in World War II. ROC curves
were originally developed by the British as part of the “Chain Home” radar system. ROC analysis was
used to analyze radar data to differentiate between enemy aircraft and signal noise (e.g. flocks of
geese).

Radar Operators were human classifiers! 



Classification Errors
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Training error: are mistakes that are made on the training set

Generalization error: errors are made on the test set (i.e. records that have not 
been trained on the system).

Underfitting: The model is too simple and does not allow a good classification or 
set training set or test set

Overfitting: The model is too complex, it allows a good classification of the training 
set, but a poor classification of the test set

• The model fails to generalize because it is based on the specific peculiarities of the 
training set that are not found in the test set (e.g. noise present in the training set)



Underfitting and Overfitting
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• 500 circles and 500 triangles

• Circular points: 0.5  sqrt(x12+x22)  1

• Triangular points: sqrt(x12+x22) > 0.5 or sqrt(x12+x22) < 1



Overfitting Due to Noise
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The boundaries of the areas are distorted due to noise



Overfitting due to the reduced size of the 
training set
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Lack of points at the bottom of the chart makes it difficult to find a proper 
classification for that portion of the region

Points in the training set



How to handle the Overfitting: pre-pruning 
(Early stopping rule)
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Stop splitting before you reach a deep tree

A node can not be split further if:
• Node does not contain instances
• All instances belong to the same class
• All attributes have the same values

More restrictive conditions potentially applicable are:
• Stop splitting if the number of instances in the node is less than a fixed amount
• Stop splitting if distribution of instances between classes is independent of attribute values
• Stop splitting if you do not improve the purity measure (e.g. Gini or information gain).



How to handle the Overfitting: post-pruning 
(Reduced Error Pruning)
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Run all possible splits
Examine the decision tree nodes obtained with a bottom-up logic
Collate a sub tree in a leaf node if this allows to reduce the generalization error (i.e. on the validation set)

• Choose to collapse the sub tree that determines the maximum error reduction (N.B. greedy 
choice)

Instances in the new leaf can be tagged

• Based on the label that appears most frequently in the sub-tree
• According to the label that occurs most frequently in the instances of the training set that belong 

to the sub-tree

Post-pruning is more effective but involves more computational cost. It is based on the evidence of the result of 
a complete tree



Notes on Overfitting
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Overfitting results in more complex decision-making trees than necessary

The classification error done on the training set does not provide accurate estimates
about tree behavior on unknown records

It requires new techniques to estimate generalization errors



Estimate generalization errors
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A decision tree should minimize the error on the real data set, unfortunately during construction, only the
training set is available.
Then the real time data error must be estimated.
• Re-substitution error: number of errors in the training set
• Generalization error: number of errors in the real data set

The methods for estimating the generalization error are:
• Optimistic approach: e'(t) = e(t)

• Pessimistic approach
• Minimum Description Length (MDL)
• Using the test set: The generalization error is equal to the error on the test set.

• Normally the test set is obtained by extracting from the initial training set 1/3 of the records
• It offers good results but the risk is to work with a too small training set



Occam’s Razor

66

Give two models with a similar generalization error always choose the simplest one
◦ For complex models, it is more likely that errors are caused by accidental data conditions

It is therefore useful to consider the complexity of the model when evaluating the 
goodness of a decision tree

Note: The methodological principle has been expressed in the 14th century by the 
English Franciscan philosopher and friar William of Ockham



Minimum Description Length
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Give two models choose the one that minimizes the cost to describe a classification
To describe the model I can:

A) Sequentially send class O (n)
B) Build a classifier, and send the description along with a detailed description of the mistakes it makes

Cost(model,data)=Cost(model)+Cost(data|model)

X y

X1 1

X2 0

X3 1

… …

Xn 0

X y

X1 ?

X2 ?

X3 ?

… …

Xn ?



Minimum Description Length
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Datasets with n records described by 16 binary attributes and 3 class values

• Each inner node is modeled with the ID of the used attribute  log2(16)=4 bit
• Each leaf is modeled with the ID of the class log2(3)=2 bit
• Each error is modeled with its position in the training set considering n record log2(n)

Cost(Tree1)= 4×2 + 2×3 + 7 × log2(n) =14 + 7 × log2(n)
Cost(Tree2)= 4×4 + 2×5 + 4 × log2(n) =26 + 4 × log2(n)

Cost(Tree1) < Cost(Tree2)  se n < 16

Tree1

7 errors

Tree2

4 errors



Pessimistic approach
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 The generalization error is estimated by adding to the error on the training set a 
penalty related to the complexity of the model

 e(ti): classification errors on leaf i

 (ti): leaf-related penalty i

 n(ti) number of record in the training set belonging to leaf i

 For binary trees a penalty equal to 0.5 implies that a node should always be 
expanded in the two child nodes if it improves the classification of at least one 
record
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Post Pruning: an example
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A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training error (before split) = 10/30
Pessimistic error = (10 + 0.5) / 30 = 10.5 / 30
Training error (after split) = 9/30
Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1



Post Pruning: an example
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Optimistic error?

◦ Do not cut in any of the cases

Pessimistic error (penalty 0.5)?

◦ Do not cut in case 1, cut in case 2

Pessimistic error (penalty 1)?

C0: 11

C1: 3

C0: 2

C1: 4

C0: 14

C1: 3

C0: 2

C1: 2

Case 1:

Case 2:



Building the Test Set
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Holdout

• Use 2/3 of training records and 1/3 for validation

• Disadvantages:

• It works with a reduced set of training

• The result depends on the composition of the training set and test set

Random subsampling

• It consists of a repeated execution of the holdout method in which the training dataset is randomly 
selected



Building the Test Set
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Cross validation

• Partition the records into separate k subdivisions

• Run the training on k-1 partitions and test the remainder

• Repeat the test k times and calculate the average accuracy

• CAUTION: cross validation creates k different classifiers. Thus, validation indicates how much the type 
of classifier and its parameters are appropriate for the specific problem

• Built decision trees can have different split attributes and conditions depending on the character of the 
k-th training set

Bootstrap ...



Bootstrap
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Unlike previous approaches, the extracted records are replaced. If the initial dataset consists of N records, you 
can create a N record set in which each record has approximately 63.2% probability of appearing (with N 
sufficiently large)

1 - (1 - 1 / N) N = 1 - e-1 = 0.632

• Records that are not used even once in the current training set form the validation set

The procedure is repeated b times. Commonly, the model's accuracy is calculated as:

where Acci is the accuracy of the i-th bootstrap, while Accs is the accuracy of the complete dataset

The bootstrap does not create a (new) dataset with more information, but it can stabilize the obtained results of 
the available dataset. It is therefore particularly useful for small datasets.



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b
Acc

1

368.0632.0
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C4.5
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Widely used Decision Tree algorithm. It extends ID3 and Hunt Algorithm. 

Features:
• Use GainRatio as a criterion for determining the split attribute
• It manages the continuous attributes by determining a split point dividing the range of values into two
• It manages data with missing values. Missing attributes are not considered to calculate GainRatio.
• It can handle attributes that are associated with different weights
• Run post Pruning of the created tree

The tree construction stops when:
• The node contains records belonging to a single class
• No attribute allows to determine a positive GainRatio
• Node does not contain records.



Exercise
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Using the classification error as a measure, identify which attribute should be chosen first and which 
one per second
• Compute contingency matrices

• Compute the information gain

How do the results change if you use the worst 
attribute as the split attribute? 
Comment on the result

A B C
# instances

+ -

T T T 5 0

F T T 0 20

T F T 20 0

F F T 0 5

T T F 0 0

F T F 25 0

T F F 0 0

F F F 0 25


