
Data Mining
D E C I S I O N T R E E

Matteo Golfarelli

Decision Tree
• It is one of the most widely used classification techniques that allows you to

represent a set of classification rules with a tree.

• Tree: hierarchical structure consisting of a set of nodes, correlated by arcs labeled
and oriented. There are two types of nodes:

• Leaf nodes identify classes, while the remaining nodes are labeled based on the attribute that partitions the
records. The partitioning criterion represents the label of the arcs

• Each root-leaf path represents a classification rule

2

Decision Tree
• It is one of the most widely used classification techniques that allows you to

represent a set of classification rules with a tree.

• Tree: hierarchical structure consisting of a set of nodes, correlated by arcs labeled
and oriented. There are two types of nodes:

• Leaf nodes identify classes, while the remaining nodes are labeled based on the attribute that partitions the
records. The partitioning criterion represents the label of the arcs

• Each root-leaf path represents a classification rule

3

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Decision Tree: an Example

4

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Split Attribute

Training Data Model: Decision Tree

Decision Tree: an Example

5

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Split Attribute

Training Data Model: Decision Tree

For each dataset several decision tree

could be defined

Applying the model

6

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree

Induction

algorithm

Training Set

Decision

Tree

Applying the model

7

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Start from the root

Applying the model

8

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Applicare il modello al data set

9

Applying the model

10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Applying the model

11

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Applying the model

12

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Set Cheat = “No”

Learning the model

13

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree

Induction

algorithm

Training Set

Decision

Tree

Learning the model

14

The decision tree number grows exponentially with the number of attributes. Algorithms
generally use greedy techniques that locally make the "best" choice

Many algorithms are available:

• Hunt's Algorithm
• CART
• ID3, C4.5
• Sliq, SPRINT

Different issues have to be addressed

• Choice of the split policy

• Choice of the stop policy

• Underfitting/Overfitting

• ID3, C4.5
• Sliq, SPRINT

• Data Fragmentation

• Search Criteria

• Expression

• Replication of trees

Learning the model

15

The decision tree number grows exponentially with the number of attributes. Algorithms
generally use greedy techniques that locally make the "best" choice

Many algorithms are available:

• Hunt's Algorithm
• CART
• ID3, C4.5
• Sliq, SPRINT

Different issues have to be addressed

• Choice of the split policy

• Choice of the stop policy

• Underfitting/Overfitting

• ID3, C4.5
• Sliq, SPRINT

• Data Fragmentation

• Search Criteria

• Expression

• Replication of trees

The Hunt’s Algorithm

16

Recursive approach that progressively subdivides a set of Dt records into
purely pure record sets

Let Dt be the set of records of the training set corresponding to node t
and yt = {y1, ..., yk} the possible class labels

Overall procedure:
◦ If Dt contains records belonging to the yj class only, then t is a leaf node

with label yj

◦ If Dt is an empty set, then t is a leaf node to which a parent node class is
assigned

◦ If Dt contains records belonging to several classes, you choose an
attribute and a split policy to partition the records into multiple subsets.

◦ Apply recursively the current procedure for each subset

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Dt

?

Pseudocode

17

// Let E be the training set and F the attributes

result=PostPrune(TreeGrowth(E,F));

TreeGrowth(E,F)
if StoppingCond(E,F)= TRUE then
leaf=CreateNode();
leaf.label=Classify(E);
return leaf;

else
root = CreateNode();
root.test_cond = FindBestSplit(E,F);
let V = {v | v is a possible outcome of root.test_cond}

for each v  V do
Ev = {e | root.test_cond (e)=v and e  E}
child = TreeGrowth(Ev,F);
add child as descendants of root and label edge
(rootchild) as v

end for
end if
return root;

end;

Further Remarks…

18

Finding a optimal decision tree is a NP-Complete problem, but many heuristic
algorithms are available and very efficient
• Most approaches run a top down recursive partition based on greedy criteria

Classification using a decision tree is extremely fast and provides easy
interpretation of the criteria
• The worst case is O (w) where w is the depth of the tree

Decision trees are robust enough to strongly correlated attributes
• One of the two attributes will not be considered
• It is also possible to try to discard one of the preprocessing attributes through appropriate

feature selection techniques

Further Remarks…

19

Decision tree expressivity is limited to the possibility of performing search space
partitions with conditions that involve only one attribute at a time

• Decision boundary parallel to the axes

Yes No

4

0

0

4

Yes No

0

3

4

0

Yes No

y<0.33

X<0.43

y<0.47

X-Y = 1 This split is not feasible with traditional decision trees

Characteristic features

20

Starting from the basic logic to completely define an algorithm for building
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for interrupting splitting
• Methods for evaluating the goodness of a decision tree

Defining the Split Condition

21

Depends on the type of attribute

• Nominal
• Ordinal
• Continuous

Depends on the number of splits applicable to attribute values

• Binary splits
• N-ary splits

Splitting Nominal Attributes

22

N-ary Split: Creates as many partitions as the attribute values are

Binary Split: Creates two partitions only. The attribute value optimally
split the dataset must be found.

CarType
Family

Sports

Luxury

CarType
{Family,

Luxury} {Sports}

CarType
{Sports,

Luxury} {Family} OR

Splitting Ordinal Attributes

23

• Partitioning should not violate order sorting.

N-ary Split: Creates as many partitions as the attribute values are

Binary Split: Creates two partitions only. The attribute value optimally
split the dataset must be found.

Size
{Medium,

Large} {Small}

Size
{Small,

Medium} {Large}

OR

Size
{Small,

Large} {Medium}

Size
Small

Medium

Large

Splitting Continuous Attributes

24

• N-ary Split: The split condition can be expressed as a Boolean test that results
in multiple ranges of values. The algorithm must consider all possible range of
values as possible split points

• Binary Split : The split condition can be expressed as a binary comparison test.
The algorithm must consider all values as possible split points

24

Taxable

Income

> 80K?

Yes No

Taxable

Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

Splitting Continuous Attributes

25

A discretization technique can be used to manage the complexity of the search
for optimal split points

• Static: discretization takes place only once before applying the algorithm

• Dynamic: discretization takes place at each recursion step by exploiting
information about the distribution of input data to the Dt node.

25

Characteristic features

26

Starting from the basic logic to completely define an algorithm for building
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for interrupting splitting
• Methods for evaluating the goodness of a decision tree

How to determine the best split value?

27

• Before splitting a single class with 10 records in C0 class and 10 records
in C1 class

• The split criterion must allow you to determine more pure classes. It
needs a measure of purity
• Gini index

• Entropy

• Misclassification error

Own

Car?

C0: 6

C1: 4

C0: 4

C1: 6

C0: 1

C1: 3

C0: 8

C1: 0

C0: 1

C1: 7

Car

Type?

C0: 1

C1: 0

C0: 1

C1: 0

C0: 0

C1: 1

Student

ID?

...

Yes No Family

Sports

Luxury c
1

c
10

c
20

C0: 0

C1: 1
...

c
11

How to determine the best split value?

28

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10

C1 N11

C0 N20

C1 N21

C0 N30

C1 N31

C0 N40

C1 N41

C0 N00

C1 N01

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs M0 – M34

Impurity Measures

29

• Given a node p with records belonging to k classes and its partitioning in n child nodes

• M = record number in father node p

• Mi = number of records in son node i

ATTENTION do not confuse the number of classes (k)
and that of child nodes (n)

• Several index can be adopted

• Gini index: adopted in CART, SLIQ, SPRINT.

• Entropy adopted in ID3 e C4.5

• Misclassification Error

• The total impurity of the split is given by the following formula where meas () is one of the measures
introduced so far





n

i

i
split imeas

m

m
Impurity

1

)(





k

j

ijpiGINI
1

2)]|([1)(





k

j

ijpijpiEntropy
1

)|(log)|()(

)|(max1)(ijpiError
Kj



Comparing Impurity Measures

30

• Impurity measures behavior for a two-class problem

Computing Gini for Binary Attributes

31

B?

Yes No

Node N3 Node N4

 Parent

C1 6

C2 6

Gini = 0.500

 N1 N2

C1 4 2

C2 3 3

Gini=0.486

Gini(N3) = 1 – (5/7)2 – (2/7)2 = 0.408

Gini(N4) = 1 – (1/5)2 – (4/5)2 = 0.320

Impurity= 7/12 * 0.408 + 5/12 * 0.320= 0.371

A?

Yes No

Node N1 Node N2

 N3 N4

C1 5 1

C2 2 4

Gini=0.371

Computing Gini for Categorical Attributes

32

It is usually more efficient to create a "count matrix" for each distinct value of the classification
attribute and then perform calculations using that matrix

CarType

{Sports,
Luxury}

{Family}

C1 3 1

C2 2 4

Gini 0.400

CarType

{Sports}
{Family,
Luxury}

C1 2 2

C2 1 5

Gini 0.419

CarType

Family Sports Luxury

C1 1 2 1

C2 4 1 1

Gini 0.393

N-ary split Binary split

(find best partition of values)

Computing Gini for Continuous Attributes

33

It requires to define the split point using a binary condition. The number
of possible conditions is equal to the number of distinct values of the
attribute

You can calculate a matrix count for each split value. The array will count
the elements of each class for attribute values greater than or less than
the split value

A naive approach:

• For each split v value, read the DB (with N records) to build the count
matrix and calculate the Gini index

• Computationally inefficien - O (N2) – since:

• Scan DB O (N)

• Repeat for each value of v O (N)

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Taxable

Income

> 80K?

Yes No

Computing Gini for Continuous Attributes
A more efficient solution is to:

• Sort records by attribute value

• Read the values sorted and update the count matrix, then calculate the Gini index

• Choose as the split point the value that minimizes the index

Cheat No No No Yes Yes Yes No No No No

 Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230

<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Feasible split points

Ordered values

Sono possibili ulteriori ottimizzazioni?

Gain-based Split
Using class impurity measures such as Gini and Entropy requires choosing the split value that
maximizes the "gain" in terms of reducing the impurity of the classes after the split.
For example, considering entropy, the gain of partitioning of a node in child nodes is:

Selecting the split value that maximizes GAIN tends to determine split criteria that generate a
very large number of very pure classes but with few records.

• Partitioning students according to their enrollment guarantees that all classes (formed by
only one student) are totally pure !!











 



n

i

i
split iEntropy

m

m
pEntropyGAIN

1

)()(

Split based on split info
To avoid the problem of spraying classes, it is preferable to maximize the Gain Ratio:
N = number of child nodes
M = record number in father p
Mi = number of records in child node i

The higher the number of children, the greater the value of SplitInfo with a consequent
reduction in the GainRatio
For example, assuming that each child node contains the same number of records, SplitInfo =
log n.
C4.5 uses the SplitINFO-based criterion

SplitINFO

GAIN
GainRATIO

Split

split  



n

i

ii

m

m

m

m
SplitINFO

1

log

Split based on split info
To avoid the problem of spraying classes, it is preferable to maximize the Gain
Ratio:

n = da 2 a 64

m = 100
mi = m/n

0

1

2

3

4

5

6

7

2 5 8

1
1

1
4

1
7

2
0

2
3

2
6

2
9

3
2

3
5

3
8

4
1

4
4

4
7

5
0

5
3

5
6

5
9

6
2

S
p

li
tI

n
fo

#Child node

Exercize
Compute Gini index and information gain for the following binary problem and
comment on the results

A B Classe

T F +

T T +

T T +

T F -

T T +

F F -

F F -

F F -

T T -

T F -

Characteristic features

39

Starting from the basic logic to completely define an algorithm for building
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree

Stop Criteria for Decision Tree Induction

40

Stop splitting a node when all its records belong to the same class

Stop splitting a node when all its records have similar values on all
attributes

• Classification would be unimportant and dependent on small
fluctuations in values

Stop splitting when the number of records in the node is below a certain
threshold (data fragmentation)

• The selected criterion would not be statistically relevant

Characteristic features

41

Starting from the basic logic to completely define an algorithm for building
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree

Metrics for model evaluation

42

Starting from the basic logic to completely define an algorithm for building
decision trees it is necessary to define:
• The split condition
• The criterion defining the best split
• The criterion for stopping the split
• Methods for evaluating the goodness of a decision tree

Metrics for model evaluation

43

The Confusion Matrix evaluates the ability of a classifier based on the following
indicators
• TP (true positive): records correctly classified as Yes class
• FN (false negative): Incorrectly classified records as class No
• FP (false positive): Incorrectly classified records as class Yes
• TN (true negative) records correctly classified as class No

If the classification uses n classes, the confusion matrix will be n × n

Expected Class

Actual
Class

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

Accuracy

44

Accuracy is the most widely used metric to synthesize the information
of a confusion matrix

Equally, the frequency of the error could be used

FNFPTNTP

TNTP




Accuracy

FNFPTNTP

FNFP




 rateError

Accuracy Limitiations

45

Accuracy is not an appropriate metric if the classes contain a very
different number of records. Consider a binary classification problem in
which

• # Record of class 0 = 9990

• # Record of class 1 = 10

A model that always returns class 0 will have an accuracy of 9990/10000 =
99.9%

In the case of binary classification problems, the class "rare" is also called
a positive class, while the class that includes most of the records is called
a negative class

Precision and Recall

46

Precision and Recall are two metrics used in applications where the correct
classification of positive class records is more important

Precision measures the fraction of record results actually positive among all those
who were classified as such

• High values indicate that few negative class records were incorrectly classified as positive.

Recall measures the fraction of positive records correctly classified
• High values indicate that few records of the positive class were incorrectly classified as negatives.

FNTP

TP

FPTP

TP







r Recall,

 p Precision,

Positive Negative

FN

TP FP

TN

Precision and Recall

47

Precision = 1 if all the positive records
were actually detected

Recall = 1 if there are no false negatives

If both are valid 1, the predetermined classes coincide with the real ones

Positive Negative

FN

TP

TN

Positive Negative

TP FP TN

F-measure

48

A metric that summarizes precision and recall is called F-measure

F-measure represents the harmonic mean of precision and recall

• The harmonic average between two x and y numbers tends to be close to the smallest of the two
numbers. So if the harmonic average is high, it means both precision and recall are.

• ... so there have been no false negative or false positives

FNFPTP

TP

pr

rp









2

22
F measure,-F

Cost-Based Evaluation

49

Accuracy, Precision-Recall and F-measure classify an instance as positive if P(+,i)>P(-,i).
◦ They assume that FN and FP have the same weight, thus they are Cost-Insensitive

◦ In many domains this is not true!
◦ For a cancer screening test, for example, we may be prepared to put up with a relatively high false positive rate in order to get a high true

positive, it is most important to identify possible cancer sufferers

◦ For a follow-up test after treatment, however, a different threshold might be more desirable, since we want to minimize false negatives, we
don’t want to tell a patient they’re clear if this is not actually the case.

The Cost Matrix

50

The cost matrix encodes the penalty that a classifier incurs in classifying a record in a different class
A negative penalty indicates the "prize" that is obtained for a correct classification

C(M)=TP×C(+|+) + FP×C(+|-) + FN×C(-|+) + TN×C(-|-)

A model constructed by structuring, as a purity function, a cost matrix will tend to provide a model
with a minimum cost over the specified weights

Expected Class j

Actual

Class i

C(i|j) Class = + Class=-

Class=+ C(+|+) C(+|-)

Class=- C(-|+) C(-|-)

Computing the Cost

51

Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

ROC Space

52

ROC graphs are two-dimensional graphs that depict relative tradeoffs between benefits (true
positive) and costs (false positive) induced by a classifier. We distinguish between:

1

0,75

0.5

0,25

0

TP
R

=T
P/

(T
P

+F
N

)

TPR=FP/(TN+FP)
0 0,25 0,5 0,75 1

• Probabilistic classifiers return a score that is not necessarily a sensu
stricto probability but represents the degree to which an object is a
member of one particular class rather than another one (e.g.
Decision tree, Naïve Bayes)
• In a decision tree an istance in a leaf is associated to the class + if the

number positive training instances in the leaf (pos) is greather than the
number of negative instances (neg). The ratio pos/(pos+neg) can be used
as a score showing the likelihood of an instance to be of class + or -

• A discrete classifier predicts only the classes to which a test object
belongs (e.g. SVM)

ROC curve characterizes a probabilistic classifier, and each point of
this curve corresponds to a discrete classifier.

ROC Space

53

A ROC graph for a probabilistic classifier is obtained varying the threshold (or the probability if
available) used to assign an instance i to a class (+/-).

• Instead of P(+,i) > P(-,i) than i is +

• We have if P(+,i)> x than i is + x  [0,..,1]

Each x value determines different TPR and FPR

The ROC curve shape depends both on the classifier capabilities
and on the dataset features.

1

0,75

0.5

0,25

0

TP
R

=T
P/

(T
P

+F
N

)

FPR=FP/(TN+FP)
0 0,25 0,5 0,75 1

TN TN TNTP TP TP

FP FPFN FN

x x x

54

A good classifier tends to have performance close to the higher-left corner of the
ROC graph that is: High TPR and Low FPR

The Area Under the Curve – AUC provides an overall rating of the classifier,
while segments of the curve provide a rating in specific TPR – FPR settings.

The larger the overlap between + and – instances distributions, the harder for
the classifier to distinguish between positive and negative instances.

A dummy classifier performs on the ROC graph diagonal: the TPR is equal to the
FPR since the classifier answers are random

Understanding the ROC Space

Comparison of Classifier via ROC curve

55

A classifier comparison based on ROC curves or AUC values can be either graphical or numerical.

• A ROC curve running above another is an indicator of better classifier performance, and by the same
token, the bigger the AUC, the better the overall performance of the test.

• However, this reasoning is meaningful only if the two ROC curves do not cross at any point. If they do,
then it makes intuitive sense to point out the region in which one classifier outperforms the other,
but the comparison of the complete AUC values is not very informative.
• DALI is better than SW when a low FP rate is needed

• BLAST is always worse than DALI & SW

ROC space properties

56

ROC curves are insensitive to changes in class distribution. If the proportion of positive to negative
instances changes in a test set, the ROC curves will not change.

ROC graphs are based upon TPR and FPR, in which each dimension is a strict columnar ratio, so do not
depend on class distributions.

The class distribution is the relationship of the
left (P) column to the right (N) column. Any
performance metric that uses values from both
columns will be inherently sensitive to class
skews. Metrics such as accuracy, precision and F
score use values from both columns of the
confusion matrix. As a class distribution changes
these measures will change as well, even if the
fundamental classifier performance does not.

Where do ROC curves come from?

57

ROC stands for Receiver Operator Characteristic. The term has its roots in World War II. ROC curves
were originally developed by the British as part of the “Chain Home” radar system. ROC analysis was
used to analyze radar data to differentiate between enemy aircraft and signal noise (e.g. flocks of
geese).

Radar Operators were human classifiers!

Classification Errors

58

Training error: are mistakes that are made on the training set

Generalization error: errors are made on the test set (i.e. records that have not
been trained on the system).

Underfitting: The model is too simple and does not allow a good classification or
set training set or test set

Overfitting: The model is too complex, it allows a good classification of the training
set, but a poor classification of the test set

• The model fails to generalize because it is based on the specific peculiarities of the
training set that are not found in the test set (e.g. noise present in the training set)

Underfitting and Overfitting

59

• 500 circles and 500 triangles

• Circular points: 0.5  sqrt(x12+x22)  1

• Triangular points: sqrt(x12+x22) > 0.5 or sqrt(x12+x22) < 1

Overfitting Due to Noise

60

The boundaries of the areas are distorted due to noise

Overfitting due to the reduced size of the
training set

61

Lack of points at the bottom of the chart makes it difficult to find a proper
classification for that portion of the region

Points in the training set

How to handle the Overfitting: pre-pruning
(Early stopping rule)

62

Stop splitting before you reach a deep tree

A node can not be split further if:
• Node does not contain instances
• All instances belong to the same class
• All attributes have the same values

More restrictive conditions potentially applicable are:
• Stop splitting if the number of instances in the node is less than a fixed amount
• Stop splitting if distribution of instances between classes is independent of attribute values
• Stop splitting if you do not improve the purity measure (e.g. Gini or information gain).

How to handle the Overfitting: post-pruning
(Reduced Error Pruning)

63

Run all possible splits
Examine the decision tree nodes obtained with a bottom-up logic
Collate a sub tree in a leaf node if this allows to reduce the generalization error (i.e. on the validation set)

• Choose to collapse the sub tree that determines the maximum error reduction (N.B. greedy
choice)

Instances in the new leaf can be tagged

• Based on the label that appears most frequently in the sub-tree
• According to the label that occurs most frequently in the instances of the training set that belong

to the sub-tree

Post-pruning is more effective but involves more computational cost. It is based on the evidence of the result of
a complete tree

Notes on Overfitting

64

Overfitting results in more complex decision-making trees than necessary

The classification error done on the training set does not provide accurate estimates
about tree behavior on unknown records

It requires new techniques to estimate generalization errors

Estimate generalization errors

65

A decision tree should minimize the error on the real data set, unfortunately during construction, only the
training set is available.
Then the real time data error must be estimated.
• Re-substitution error: number of errors in the training set
• Generalization error: number of errors in the real data set

The methods for estimating the generalization error are:
• Optimistic approach: e'(t) = e(t)

• Pessimistic approach
• Minimum Description Length (MDL)
• Using the test set: The generalization error is equal to the error on the test set.

• Normally the test set is obtained by extracting from the initial training set 1/3 of the records
• It offers good results but the risk is to work with a too small training set

Occam’s Razor

66

Give two models with a similar generalization error always choose the simplest one
◦ For complex models, it is more likely that errors are caused by accidental data conditions

It is therefore useful to consider the complexity of the model when evaluating the
goodness of a decision tree

Note: The methodological principle has been expressed in the 14th century by the
English Franciscan philosopher and friar William of Ockham

Minimum Description Length

67

Give two models choose the one that minimizes the cost to describe a classification
To describe the model I can:

A) Sequentially send class O (n)
B) Build a classifier, and send the description along with a detailed description of the mistakes it makes

Cost(model,data)=Cost(model)+Cost(data|model)

X y

X1 1

X2 0

X3 1

… …

Xn 0

X y

X1 ?

X2 ?

X3 ?

… …

Xn ?

Minimum Description Length

68

Datasets with n records described by 16 binary attributes and 3 class values

• Each inner node is modeled with the ID of the used attribute  log2(16)=4 bit
• Each leaf is modeled with the ID of the class log2(3)=2 bit
• Each error is modeled with its position in the training set considering n record log2(n)

Cost(Tree1)= 4×2 + 2×3 + 7 × log2(n) =14 + 7 × log2(n)
Cost(Tree2)= 4×4 + 2×5 + 4 × log2(n) =26 + 4 × log2(n)

Cost(Tree1) < Cost(Tree2) se n < 16

Tree1

7 errors

Tree2

4 errors

Pessimistic approach

69

 The generalization error is estimated by adding to the error on the training set a
penalty related to the complexity of the model

 e(ti): classification errors on leaf i

 (ti): leaf-related penalty i

 n(ti) number of record in the training set belonging to leaf i

 For binary trees a penalty equal to 0.5 implies that a node should always be
expanded in the two child nodes if it improves the classification of at least one
record












k

i
i

k

i
ii

tn

tte

E(T)

1

1

)(

)()(

Post Pruning: an example

70

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training error (before split) = 10/30
Pessimistic error = (10 + 0.5) / 30 = 10.5 / 30
Training error (after split) = 9/30
Pessimistic error (After splitting)

= (9 + 4  0.5)/30 = 11/30

PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Post Pruning: an example

71

Optimistic error?

◦ Do not cut in any of the cases

Pessimistic error (penalty 0.5)?

◦ Do not cut in case 1, cut in case 2

Pessimistic error (penalty 1)?

C0: 11

C1: 3

C0: 2

C1: 4

C0: 14

C1: 3

C0: 2

C1: 2

Case 1:

Case 2:

Building the Test Set

72

Holdout

• Use 2/3 of training records and 1/3 for validation

• Disadvantages:

• It works with a reduced set of training

• The result depends on the composition of the training set and test set

Random subsampling

• It consists of a repeated execution of the holdout method in which the training dataset is randomly
selected

Building the Test Set

73

Cross validation

• Partition the records into separate k subdivisions

• Run the training on k-1 partitions and test the remainder

• Repeat the test k times and calculate the average accuracy

• CAUTION: cross validation creates k different classifiers. Thus, validation indicates how much the type
of classifier and its parameters are appropriate for the specific problem

• Built decision trees can have different split attributes and conditions depending on the character of the
k-th training set

Bootstrap ...

Bootstrap

74

Unlike previous approaches, the extracted records are replaced. If the initial dataset consists of N records, you
can create a N record set in which each record has approximately 63.2% probability of appearing (with N
sufficiently large)

1 - (1 - 1 / N) N = 1 - e-1 = 0.632

• Records that are not used even once in the current training set form the validation set

The procedure is repeated b times. Commonly, the model's accuracy is calculated as:

where Acci is the accuracy of the i-th bootstrap, while Accs is the accuracy of the complete dataset

The bootstrap does not create a (new) dataset with more information, but it can stabilize the obtained results of
the available dataset. It is therefore particularly useful for small datasets.





b

i
siboot AccAcc

b
Acc

1

368.0632.0
1

C4.5

75

Widely used Decision Tree algorithm. It extends ID3 and Hunt Algorithm.

Features:
• Use GainRatio as a criterion for determining the split attribute
• It manages the continuous attributes by determining a split point dividing the range of values into two
• It manages data with missing values. Missing attributes are not considered to calculate GainRatio.
• It can handle attributes that are associated with different weights
• Run post Pruning of the created tree

The tree construction stops when:
• The node contains records belonging to a single class
• No attribute allows to determine a positive GainRatio
• Node does not contain records.

Exercise

76

Using the classification error as a measure, identify which attribute should be chosen first and which
one per second
• Compute contingency matrices

• Compute the information gain

How do the results change if you use the worst
attribute as the split attribute?
Comment on the result

A B C
instances

+ -

T T T 5 0

F T T 0 20

T F T 20 0

F F T 0 5

T T F 0 0

F T F 25 0

T F F 0 0

F F F 0 25

